Least-Squares Methods for Nonnegative Matrix Factorization Over Rational Functions

نویسندگان

چکیده

Nonnegative Matrix Factorization (NMF) models are widely used to recover linearly mixed nonnegative data. When the data is made of samplings continuous signals, factors in NMF can be constrained samples rational functions, which allow fairly general models; this referred as using functions (R-NMF). We first show that, under mild assumptions, R-NMF has an essentially unique factorization unlike NMF, crucial applications where ground-truth need recovered such blind source separation problems. Then we present different approaches solve R-NMF: R-HANLS, R-ANLS and R-NLS methods. From our tests, no method significantly outperforms others, a trade-off should done between time accuracy. Indeed, R-HANLS fast accurate for large problems, while more accurate, but also resources demanding, both memory. very only small Moreover, that various tasks including recovery semi-synthetic classification problem real hyperspectral signals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

Projected Gradient Methods for Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) can be formulated as a minimization problem with bound constraints. Although bound-constrained optimization has been studied extensively in both theory and practice, so far no study has formally applied its techniques to NMF. In this letter, we propose two projected gradient methods for NMF, both of which exhibit strong optimization properties. We discuss ...

متن کامل

Descent methods for Nonnegative Matrix Factorization

In this paper, we present several descent methods that can be applied to nonnegative matrix factorization and we analyze a recently developped fast block coordinate method called Rank-one Residue Iteration (RRI). We also give a comparison of these different methods and show that the new block coordinate method has better properties in terms of approximation error and complexity. By interpreting...

متن کامل

A Fast Hierarchical Alternating Least Squares Algorithm for Orthogonal Nonnegative Matrix Factorization

Nonnegative Matrix Factorization (NMF) is a popular technique in a variety of fields due to its component-based representation with physical interpretablity. NMF finds a nonnegative hidden structures as oblique bases and coefficients. Recently, Orthogonal NMF (ONMF), imposing an orthogonal constraint into NMF, has been gathering a great deal of attention. ONMF is more appropriate for the cluste...

متن کامل

Low-Complexity Recursive-Least-Squares-Based Online Nonnegative Matrix Factorization Algorithm for Audio Source Separation

An online nonnegative matrix factorization (NMF) algorithm based on recursive least squares (RLS) is described in a matrix form, and a simplified algorithm for a low-complexity calculation is developed for frame-by-frame online audio source separation system. First, the online NMF algorithm based on the RLS method is described as solving the NMF problem recursively. Next, a simplified algorithm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2023

ISSN: ['1053-587X', '1941-0476']

DOI: https://doi.org/10.1109/tsp.2023.3260560